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An example

V/2 is an irrational number,
that is v/2 cannot be written as § with x,y € Z and

y #0.

0

The polynomial equation
x?—2y*=0

has no integer solutions (x, y), apart from (0, 0).
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An example

x?—2y%2 =0
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An example

The polynomial equation The reduced equation mod 3
X2 B 2}/2 =0 homogenous X2 + y2 =0
equation
has no integer solutions = has no solutions (x,y) with
(x,y), apart from (0,0). x,y € F3 = {0,1,2}, apart
from (0,0).

0

)
The curve defined by the
equation The reduced curve mod 3 de-
fined by the equation
x2—2y?=0
o X 4y2=0
has only one rational point —
P(0,0). has only one rational point

over [F3, given by P(0,0).
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—  Check that (0,0) is the unique element of the finite set
{(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2)}
that verifies the equation of the curve:

x*+y*=0
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Curves over finite fields

A curve C over a finite field Fq (in its simplest form):
C:f(x,y)=0,
with f(x,y) € Fq[x, y].

A rational point over Fg on C: a point (xo, y0) with xg, yo € Fq such that
f(xo0,y0) = 0.

Interest: a curve defined over a finite field has always a finite number of
rational points.

4

Applications to information theory:
@ cryptography;
@ coding theory.
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Most of the results on curves over finite fields are stated for smooth
curves, that is, curves with no singular points.

y2 =3 +x y2 =x3 4+ x2 y2 = x

Here we deal more generally with questions on the number of rational
points on a singular curve over a finite field.
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© Background
© The quantity Ny(g, )
© Curves with prescribed singularities

@ Optimal and maximal curves
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o I, the finite field with g elements.

@ The word curve will always stand for an absolutely irreducible
projective algebraic curve.

@ The word point will stand for a closed point, unless otherwise
specified.

Let X be a curve defined over F;. We denote by:
e Fy(X) the function field of X;

o X the normalisation of X and v : X — X the normalisation map

(regular, finite and birational): Fq(X) = Fq(X);
o §X(Fgn) the number of rational points on X over Fgn;
o g the geometric genus of X, i.e. the genus of X;
o 7 the arithmetic genus of X.
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The arithmetic genus

Let Q be a point on X and let Og be the local ring of X at Q.
Fact: Og is integrally closed if and only if Q is a nonsingular point.

Let Oq be the integral closure of Og. We have that Og/Oq is a finite
dimensional F4-vector space. We define the degree of singularity of Q:

6q :=dimg, Oq/0q.

The arithmetic genus 7 of a curve X is the integer:

7r::g+Z5Q.

QeX
N —
5

oT>g;
o m = g if and only if X is a smooth curve;
o If X is a plane curve of degree d, m = w.
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A tool for counting rational points

To study §X(Fqn), we consider the zeta function of X is:

Tn
n

Zx(T) :=exp (Z EX(Fgn) ) ,

the natural generalisation of the Riemann zeta function to curves over
finite fields.

Fact: Zx(T) is a rational function in Q(T)
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The smooth case

In 1948 Weil showed that, if X is smooth of genus g,

_ P(T)
A=y
where
H(1 —w;T) € Z[T]

and w; € C are algebraic integers of absolute value /q.

The polynomial P(T) contains lots of information on the curve. In
particular we have

2g
tIX(Fgr) =q"+1— Zw,"
n=
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The smooth case

If X is a smooth curve defined over g of genus g, the integers g, § X(FFq)
and g satisfy the Serre-Weil bound:

Theorem (Serre-Weil bound) J

[EX(Fq) — (g +1)| < g[2v/q].

Let us denote by
Nqg(8)

the maximum number of rational points on a smooth curve defined over
F; of genus g. Clearly we have:

Ng(g) < g+1+g[2V/q].

Furthermore Ny(g) is explicit for g = 0,1, 2.
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The singular case

In 1996, Aubry and Perret found relations between a curve and its
normalisation.

Let X be a curve defined over I, of geometric genus g and arithmetic

genus 7, they proved that:
(oot 7))

o Zx(T)=2x(T) ]I

PeSing X

° Hj;((Fq) —iX(Fg)| <7 —g.

1 — TdegP !

Theorem (Aubry-Perret bound) J

X (Fq) — (g +1)| <g[2v/q]l + 7 —g.
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The quantity Ny(g, )

We introduce an analogous quantity of Ng(g) for singular curves:
Definition
For g a power of a prime, g and 7 non negative integers such that © > g,
let us define the quantity

Nq(ga 7T)

as the maximum number of rational points over F; on a curve defined
over [F; of geometric genus g and arithmetic genus .

Obviously we have:
o Ny(g,g) = Ny(g),
o Ny(g,m) < Ny(g) + 7 —g.
° Ny(g,7) < q+1+g2\/q+7—g,
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How to determine N,(g, ) 7

— problem of constructing singular curves with prescribed ground field
Fy, geometric genus g and arithmetic genus 7 and with “many” rational
points.

Idea : Starting from a smooth curve X of genus g defined over F; we
will construct a curve with singularities X’ such that X is the
normalisation of X’, and the added singularities are rational on the base
field and with the prescribed singularity degree.
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How to determine N,(g, ) 7

Starting point for the construction:

Theorem (Rosenlicht - 1952)

In any birational class of curves, there exists one with prescribed
singularities. More precisely, if we are given a finite number of local rings
in a function field K, no two of which have a place in common, then there
exists a projective model of K which contains points having the prescribed
local rings and elsewhere is non-singular.

v

prescribed singularity <—  prescribed local ring
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Construction of a prescribed singularity

Let start from a smooth curve X over Fq and let S = {P1,...,Ps} be a
non-empty finite set of closed points on X.
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Construction of a prescribed singularity

Let start from a smooth curve X over Fq and let S = {P1,...,Ps} be a
non-empty finite set of closed points on X.

Fq(X)

T

Op, Op

s
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Construction of a prescribed singularity

Let start from a smooth curve X over Fq and let S = {P1,...,Ps} be a
non-empty finite set of closed points on X.

O is a semi-local ring with maximal ideals Np, := Mp. N O for
i=1,...,s.
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Construction of a prescribed singularity

Let start from a smooth curve X over Fq and let S = {P1,...,Ps} be a
non-empty finite set of closed points on X.

O is a semi-local ring with maximal ideals Np, := Mp. N O for
i=1,...,s.

Let n1,...,ns be s positive integers, let us set N := Ng!--- Npe and let
us consider:

O = Fq+ N.
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Proposition

O’ =Fq + N verifies the following properties:
Q Frac(0') =F4(X) and O is the integral closure of O’ in Fq(X).
@ O’ is a local ring with maximal ideal N and residue field O' /N = F,,.
© O/0' is a Fg-vector space such that

dimg, (0/0') = " nideg P; — 1.

i=1
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Theorem

There exists a curve X' defined over F,
Q Frac(0') =F4(X) and O is the integral closure of O’ in Fq(X).
@ O’ is a local ring with maximal ideal N and residual field O’ /N = F,.
Q@ O/0' is a Fy-vector space such that

dimg,(0/0") =) " nideg P, — 1.

i=1

Marseilles, 6 July 2016 23/52



Theorem

There exists a curve X' defined over F,

@ having X as normalisation,
@ O’ is a local ring with maximal ideal N and residual field O’ /N = F,.
Q@ O/0' is a Fy-vector space such that

dimg,(0/0") =) " nideg P, — 1.

i=1
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Theorem

There exists a curve X' defined over F,

@ having X as normalisation,

@ with only one singular point Q such that Og = O’ and Q is rational.

Q@ O/0' is a Fy-vector space such that

dimg,(0/0") =) " nideg P, — 1.

i=1
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P, P,
\ ‘S /
0= ﬂi:l OP,-
\
O =F,+N

Theorem

There exists a curve X' defined over F

@ having X as normalisation,

@ with only one singular point Q such that Og = O’ and Q is rational.

© Q has a degree of singularity equal to >:_, njdeg P; — 1 and

S
m(X') :g+Zn;degP,- — 1L
i=1
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Fq(X)

opl/ \op2
N

O/

P>
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Proposition
O’ =TFq + Mp verifies the following properties:
Q Frac(O’) =TF4(X) and O is the integral closure of O" in Fq(X).
@ O’ is a local ring with maximal ideal N and residual field O’ /N = F,.

© O/0' is a Fq-vector space such that

dimg (O/0') = deg P — 1.
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Fq(X)

O=0p

|
O'I]Fqu./\/lp

Theorem

There exists a curve X' defined over F

@ having X as normalisation,

@ with only one singular point Q such that Og = O’ and Q is rational.

© Q has a degree of singularity equal to deg P — 1 and

m(X') =g+ degP — 1.
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Singular curves with many points and small 7

Theorem
Let X be a smooth curve of genus g defined over F,. Let w be an integer
of the form

T=g+a+2a3+3a+---+(n—1a,

with 0 < a; < B;j(X), where Bj(X) is the number of closed points of
degree i on the curve X. Then there exists a (singular) curve X' over Fg
of arithmetic genus 7 such that X is the normalisation of X" and

i1X'(Fq) = tX(Fq) + a2+ a3+ as + -~ + an.

Roughly speaking we can “transform” a point of degree d on a smooth
curve in a singular rational one, provided that we increase the value of the
arithmetic genus by d — 1.
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Singular curves with many points and small 7

Theorem
Let X be a smooth curve of genus g defined over F,. Let w be an integer
of the form

T=g+a+2a3+3a+---+(n—1a,

with 0 < a; < B;j(X), where Bj(X) is the number of closed points of
degree i on the curve X. Then there exists a (singular) curve X' over Fg
of arithmetic genus 7 such that X is the normalisation of X" and

i1X'(Fq) = tX(Fq) + a2+ a3+ as + -~ + an.

Remark: Points of degree 2 play a fundamental role in this construction:
they are the only ones that make it possible to increase the number of
rational points as much as the degree of singularity of the curve.
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For which values of g, g and 7 are the bounds
o Ny(g,m) < Ng(g) +7m—g
o Ng(g,m) < q+1+g[2/ql+7—¢g

reached?
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Terminology

Definition
Let X be a curve over IF; of geometric genus g and arithmetic genus .
The curve X is said to be:

(i) an optimal curve if
ﬁX(Fq) = Nq(gaﬂ');
(ii) a d-optimal curve if
t1X(Fq) = No(g) + 7 — g = No(g) +6;

(iii) a maximal curve if

iIX(Fq) =q+1+g[2\/q] +7—g.
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Optimal

d-optimal
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Optimal

Maximal

[ ]
FHK’s curve
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Fukasawa, Homma and Kim's curve

In 2011, Fukasawa, Homma and Kim considered and studied the plane
curve B over Iy defined as the image of

o: P - P2
(s,t) = (s91, 9t + st9,¢9H1)
Properties of B:

. . _ _ ¢*—q.
@ B is a rational plane curve of degree g+ 1= g =0,7 = *57;

@ Sing(B) € B(Fy);

@ For P € P!, &(P) € Sing(B) if and only if P € PL(F2) \ P!(F,). In
this case, ®~1(d(P)) = {P, P9}.

2

9°—q

2
: . . . 2_
— B is a maximal singular curve with g =0 and 7 = 254

tB(Fg) =q+1+
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d-optimal and maximal curves

Proposition
Let X be a curve of geometric genus g and arithmetic genus w. If X is
d-optimal (maximal) then:
O the normalisation X is an optimal (maximal) curve;
Q Sing(X) C X(Fg),
Q@ fQisa singglar point on X, then V_l(Q) = {P}, with P a point of
degree 2 on X;
Qrm—g< Bx(X), where By(X) denotes the number of points of degree
2onX;
Q Zx(T)=Zg(T)(1+ T) 5.
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A theorem for the existence of d-optimal curves

The existence of §-optimal curves is strictly connected to the existence of
a large number of points of degree 2 on an optimal smooth curve.

Let us denote

Xq(g): the set of optimal smooth curves defined over Fq of genus g.

By(X4(g)): the maximum number of points of degree 2 on a curve
of Xy(g).

Theorem

We have:

Nyg(g,7) = Ng(g) +7m—g <= g <m<g+ Ba(Xy(g)):

The quantity B(X,(g)) is easy to calculate for g equal to 0 and 1.
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The case of rational curves (g = 0)

Corollary
We have
Ng(0,m) =q+1+m

. . 2_
if and only if0 < m < 4519,

Fukasawa, Homma and Kim's curve is an explicit example of this corollary

2
_ 9°—gq
for m = -
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Thecase g =1

Corollary

© If p does not divide m, or q is a square, or ¢ = p we have:

Ng(1,7)=q+1+[2y/q+7—-1

ifandonly if1 <7 <1+ q2+q_[2\/g]([2\/5]+1)_

@ In the other cases we have
Ng(1,7m)=q+[2y/q]+7—1

ifand only if 1 <m <1+ q2+q+[2\/g](1—[2\/5])_
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How to bound the quantity Bx(X,(g))?

— problem of bounding the number of points of degree 2 on a smooth
curve.

When g > 2 the information on the number of rational points on a
smooth curve of genus g is not enough to determine the number of points
of degree 2.

For X a smooth curve of genus g, we will bound the quantity B»(X) using
an Euclidean approach developed by Hallouin and Perret.

Then, we will deduce bounds for By(X4(g)) by assuming X to be an
optimal smooth curve.
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The Hallouin-Perret's approach

Let X be a smooth curve defined over F; of genus g > 0.
For every positive integer n, we associate to X a n-tuple (x1,...,Xn)
defined as follows:
(6" +1) —8X(Fg)
Xj = : , I=1,...,n.
2g+\/q'

lower bound for x; +— upper bound for #X(IF)

upper bound for x;<— lower bound for §X(IF ).
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The Hallouin-Perret's approach

@ A consequence of Riemann Hypothesis:
Ixi| <1, foralli=1,...,n

4
(x1,.-sxn) €Ch={(x1,...,xn) ER"=1<x, <1, Vi=1,...,n}.
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The Hallouin-Perret's approach

@ Geometric point of view: a consequence of the Hodge Index Theorem.

1 X\ttt Xp—1  Xp
X1 1 X1 Xpn—1
G, =
Xp—1 - o1 X1
Xn  Xp—1 '+ X1 1

is a Gram matrix and thus is positive semidefinite.

4
(X1, Xn) EWn ={(x1,...,%x:) €R"| Gy >0,V C{l,...,n+1}}
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The Hallouin-Perret's approach

@ Arithmetic point of view: a consequence of the inequalities pointed
out by lhara:

iIX(Fgi) > 8X(Fg), forall i>2.

(Xt .-y Xn) € HIE ={(x1,..., %) € R"hTE(x1,x) <0, for all 2 << n},

where
X q i— 1
98 (x1,) = X — —oiy = Y (ﬂ - — )
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The Hallouin-Perret's approach

To sum up, for every n=0,1,2,... one has (x1,...,x,) € C, "W, NHIE

Hallouin and Perret showed that, increasing the dimension n, the set

Cn N Wy NHAE provides an increasingly sharper lower bound for x; (and
hence an increasingly sharper upper bound for §X(Fg)) if g is large enough
compared to q.
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Bounds for the number of points of degree 2

Let X be a smooth curve defined over [F; of genus g. We have

X (Fg2) — #X(Fq)
5 :

By(X) =

We can write By(X) as a function of x; and x»

P —q

Ba(X) = gv/q(x1 — Vaxa) +

and study this function in the domain C, N W, N H ¢ for different values
of n.

We note that any lower bound for x; implies an upper bound for Bx(X),
possibly depending on xi.
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B ¢ —q o
2(X) = ——— +gla+Va) = M(q,8).

q &1 3 4 5 6
2 7 11 14 18 21
3 12 17 21 26 31
22 18 24 30 36 42

Table: First-order upper bounds for B>(X;(g)) given by M'(q, g).
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Second order :

2x12—1<x2<1
X1 ql

f

CQﬂWQﬂ'Hg’g—> X

Table: The region Co N Wh NHIE, respectively for g < g, g = g2 and g > g».

2 2

Ly L
15 15 15
I
I P P )
0.5 0.5 Xﬁ
R
15 0.5 0.5 15 15 0.5 0.5 15 -15 R -0.5 0.5 15
-0.5 -0.5 -0.5
1.5 -1.5 1.5

% 2 2¢ 1= B(X) < gyakn — va@d - 1) + T
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Second order : n =2

Let X be a smooth curve of genus g > 0 over F;. We have:

g% +1+2g9 — L (8X(Fq) — (g +1))* - 1X(Fy)

By (X) < >

¢® + 1+ 289 — £ (Ng(g) — (a+1))* — No(g)

M’ =
(g.8) >

(2
Bx(X4(g)) < M"(q,8).
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Second order : n =

&1 9 3 4 5 6
q
2 1 2 3 4 5
3 3 3 3 5 7
2?2 5 0 4 5 3

Table: Second-order upper bounds for B>(X4(g)) given by M"(q, g).
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Third order: n =3

2x12—1§X2§1

—14 Gaelt o g Lol
1—|—2X1X2X3—X32—x12—x2>0
x2<’%+-2’7—1

X3<)2+§g;16'

1

2 2_1 <x <1
L (x1+x2)?
projection over (xi, x2) I+595 = q

Xz_f—l-q 1.

CzNWs ﬂng,g —

'_l

_|_

l\)
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Third order: n =3

Table: The projection of C3 N W5 N H{® on the plane < x1, x2 > respectively for g < g3
and g > gs.

£

H9 2 2
9.9

15 Ly o 15
P P\

2.9 ><

0.5 05 %
Ty x

15 \(os 0.5 15 A5 0.5 15
-0.5 0.5
X.S -15

1 1 g2 -1 g2 -1
Xy > —x1 — —x2+<—+1+ >x1+1+
\/q1 q 28\/9 28\/q
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Third order: n =3

Proposition

Let X be a smooth curve of genus g > % over F,. We have:

2
B2X) < \/1/4 (IXE) + e, XE) + 80, 0) — YD yx(pg) 4 THEVITHD,
ou
oa,8) = —3((2qv/a+2VQe + a° +q +2)
B(a,8) = 2(4a°8* +2ya(@* + > + g+ g+ q" +a® +a+1).
v
2

M (q,8) = \/1/4 (No(8))® + a(a, ©)Na()) + B(, 8) — @m» + %

(%
Bx(X4(g)) < M"(q, g).
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Third order: n =3

&1 3 4 5 6
q
2 0 0 1 1 1
3 2 1 2 3
22 4 1

Table: Third-order upper bounds for By(X;(g)) given by M"'(q, g).
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Upper bounds for By(X,(g))

&1 3 4 5 6
q
2 7 11 14 18 21
3 12 17 21 26 31
22 18 24 30 36 42

1

&1 3 4 5 6
q
2 0 0 1 1 1
3 3 2 1 2 3
22 5 0 4 1

Table: Upper bounds for Bx(X4(g)).
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Some exact values for N,(g, )

Proposition
Let g be a power of a prime number p. We have:
@ Ng(0,7) = q+ 1+ ifand only if0 < 7 < £59 |
@ If p does not divide [2,/q], or q is a square, or q = p, then
Ng(1,7) = q + [2\/q] + m if and only if
1<7<1+ q2+q7[2\/z]([2‘/a]+1). Otherwise,
Ng(1,7) = q + [2\/q] + © — 1 if and only if
1< 7 <14 Crorlvai-va)
Q Ifg< w and g < 7w < @—g(q—i—\/a—l) then
Ng(g,m) = Ng(g) + 7 — &.
Q Ny(2,3) =6.
O N»(3,4)=T1.
O Ny (4,5) = 14.
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