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An example

√
2 is an irrational number,

that is
√

2 cannot be written as x
y , with x , y ∈ Z and

y 6= 0.

m

The polynomial equation

x2 − 2y 2 = 0

has no integer solutions (x , y), apart from (0, 0).
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An example

The polynomial equation

x2 − 2y2 = 0

has no integer solutions
(x , y), apart from (0, 0).

m

The curve defined by the
equation

x2 − 2y2 = 0

has only one rational point
P(0, 0).

homogenous
equation⇐=

homogenous
equation⇐=

The reduced equation mod 3

x2 + y2 = 0

has no solutions (x , y) with
x , y ∈ F3 = {0, 1, 2}, apart
from (0, 0).

m

The reduced curve mod 3 de-
fined by the equation

x2 + y2 = 0

has only one rational point
over F3, given by P(0, 0).
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Example

−→ Check that (0, 0) is the unique element of the finite set

{(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

that verifies the equation of the curve:

x2 + y 2 = 0

,
Marseilles, 6 July 2016 6/52



Curves over finite fields

A curve C over a finite field Fq (in its simplest form):

C : f (x , y) = 0,

with f (x , y) ∈ Fq[x , y ].

A rational point over Fq on C: a point (x0, y0) with x0, y0 ∈ Fq such that
f (x0, y0) = 0.

Interest: a curve defined over a finite field has always a finite number of
rational points.
⇓

Applications to information theory:

cryptography;

coding theory.
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Most of the results on curves over finite fields are stated for smooth
curves, that is, curves with no singular points.

y2 = x3 + x y2 = x3 + x2 y2 = x3

Here we deal more generally with questions on the number of rational
points on a singular curve over a finite field.
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Background



Notation

Fq the finite field with q elements.

The word curve will always stand for an absolutely irreducible
projective algebraic curve.

The word point will stand for a closed point, unless otherwise
specified.

Let X be a curve defined over Fq. We denote by:

Fq(X ) the function field of X ;

X̃ the normalisation of X and ν : X̃ → X the normalisation map
(regular, finite and birational): Fq(X ) = Fq(X̃ );

]X (Fqn) the number of rational points on X over Fqn ;

g the geometric genus of X , i.e. the genus of X̃ ;

π the arithmetic genus of X .

,
Marseilles, 6 July 2016 11/52



The arithmetic genus

Let Q be a point on X and let OQ be the local ring of X at Q.

Fact: OQ is integrally closed if and only if Q is a nonsingular point.

Let OQ be the integral closure of OQ . We have that OQ/OQ is a finite
dimensional Fq-vector space. We define the degree of singularity of Q:

δQ := dimFq OQ/OQ .

The arithmetic genus π of a curve X is the integer:

π := g +
∑
Q∈X

δQ︸ ︷︷ ︸
δ

.

π ≥ g ;

π = g if and only if X is a smooth curve;

If X is a plane curve of degree d , π = (d−1)(d−2)
2 .

,
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A tool for counting rational points

To study ]X (Fqn), we consider the zeta function of X is:

ZX (T ) := exp

( ∞∑
n=1

]X (Fqn)
T n

n

)
,

the natural generalisation of the Riemann zeta function to curves over
finite fields.

Fact: ZX (T ) is a rational function in Q(T )

,
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The smooth case

In 1948 Weil showed that, if X is smooth of genus g ,

ZX (T ) =
P(T )

(1− T )(1− qT )
,

where

P(T ) =

2g∏
i=1

(1− ωiT ) ∈ Z[T ]

and ωi ∈ C are algebraic integers of absolute value
√
q.

The polynomial P(T ) contains lots of information on the curve. In
particular we have

]X (Fqn) = qn + 1−
2g∑
n=1

ωn
i .
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The smooth case

If X is a smooth curve defined over Fq of genus g , the integers q, ]X (Fq)
and g satisfy the Serre-Weil bound:

Theorem (Serre-Weil bound)

|]X (Fq)− (q + 1)| ≤ g [2
√
q].

Let us denote by
Nq(g)

the maximum number of rational points on a smooth curve defined over
Fq of genus g . Clearly we have:

Nq(g) ≤ q + 1 + g [2
√
q].

Furthermore Nq(g) is explicit for g = 0, 1, 2.
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The singular case

In 1996, Aubry and Perret found relations between a curve and its
normalisation.

Let X be a curve defined over Fq of geometric genus g and arithmetic
genus π, they proved that:

ZX (T ) = ZX̃ (T )
∏

P∈SingX

(∏
Q∈ν−1(P)(1− T degQ)

1− T degP

)
;

|]X̃ (Fq)− ]X (Fq)| ≤ π − g .

Theorem (Aubry-Perret bound)

|]X (Fq)− (q + 1)| ≤ g [2
√
q] + π − g .

,
Marseilles, 6 July 2016 16/52



The quantity Nq(g , π)



The quantity Nq(g , π)

We introduce an analogous quantity of Nq(g) for singular curves:

Definition

For q a power of a prime, g and π non negative integers such that π ≥ g ,
let us define the quantity

Nq(g , π)

as the maximum number of rational points over Fq on a curve defined
over Fq of geometric genus g and arithmetic genus π.

Obviously we have:

Nq(g , g) = Nq(g),

Nq(g , π) ≤ Nq(g) + π − g .

Nq(g , π) ≤ q + 1 + g [2
√
q] + π − g ,
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How to determine Nq(g , π) ?

−→ problem of constructing singular curves with prescribed ground field
Fq, geometric genus g and arithmetic genus π and with “many” rational
points.

Idea : Starting from a smooth curve X of genus g defined over Fq we
will construct a curve with singularities X ′ such that X is the
normalisation of X ′, and the added singularities are rational on the base
field and with the prescribed singularity degree.
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How to determine Nq(g , π) ?

Starting point for the construction:

Theorem (Rosenlicht - 1952)

In any birational class of curves, there exists one with prescribed
singularities. More precisely, if we are given a finite number of local rings
in a function field K, no two of which have a place in common, then there
exists a projective model of K which contains points having the prescribed
local rings and elsewhere is non-singular.

prescribed singularity ←→ prescribed local ring
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Curves with prescribed
singularities



Construction of a prescribed singularity

Let start from a smooth curve X over Fq and let S = {P1, . . . ,Ps} be a
non-empty finite set of closed points on X .

Fq(X )

OP1 · · · OPs

O =
⋂s

i=1OPi

O′ = Fq +N

O is a semi-local ring with maximal ideals NPi
:=MPi

∩ O for
i = 1, . . . , s.
Let n1, . . . , ns be s positive integers, let us set N := N n1

P1
· · · N ns

Ps
and let

us consider:
O′ := Fq +N .
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Fq(X )

OP1 · · · OPs

O =
⋂s

i=1OPi

O′ = Fq +N

Proposition

O′ = Fq +N verifies the following properties:

1 Frac(O′) = Fq(X ) and O is the integral closure of O′ in Fq(X ).

2 O′ is a local ring with maximal ideal N and residue field O′/N ∼= Fq.

3 O/O′ is a Fq-vector space such that

dimFq (O/O′) =
s∑

i=1

ni degPi − 1.
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Fq(X )

OP1 · · · OPs

O =
⋂s

i=1OPi

O′ = Fq +N

Theorem

There exists a curve X ′ defined over Fq

1 Frac(O′) = Fq(X ) and O is the integral closure of O′ in Fq(X ).

2 O′ is a local ring with maximal ideal N and residual field O′/N ∼= Fq.

3 O/O′ is a Fq-vector space such that

dimFq (O/O′) =
s∑

i=1

ni degPi − 1.
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Fq(X )

OP1 · · · OPs

O =
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i=1OPi

O′ = Fq +N

Theorem

There exists a curve X ′ defined over Fq

1 having X as normalisation,

2 O′ is a local ring with maximal ideal N and residual field O′/N ∼= Fq.

3 O/O′ is a Fq-vector space such that

dimFq (O/O′) =
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Fq(X )

OP1 · · · OPs

O =
⋂s

i=1OPi

O′ = Fq +N

Theorem

There exists a curve X ′ defined over Fq

1 having X as normalisation,

2 with only one singular point Q such that OQ = O′ and Q is rational.

3 O/O′ is a Fq-vector space such that

dimFq (O/O′) =
s∑

i=1

ni degPi − 1.
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Fq(X )

OP1 · · · OPs

O =
⋂s

i=1OPi

O′ = Fq +N

Theorem

There exists a curve X ′ defined over Fq

1 having X as normalisation,

2 with only one singular point Q such that OQ = O′ and Q is rational.

3 Q has a degree of singularity equal to
∑s

i=1 ni degPi − 1 and

π(X ′) = g +
s∑

i=1

ni degPi − 1.
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Fq(X )

OP1 OP2

O

O′

P1

P2

Q
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Fq(X )

O = OP

O′ = Fq +MP

Proposition

O′ = Fq +MP verifies the following properties:

1 Frac(O′) = Fq(X ) and O is the integral closure of O′ in Fq(X ).

2 O′ is a local ring with maximal ideal N and residual field O′/N ∼= Fq.

3 O/O′ is a Fq-vector space such that

dimFq (O/O′) = degP − 1.
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Fq(X )

O = OP

O′ = Fq +MP

Theorem

There exists a curve X ′ defined over Fq

1 having X as normalisation,

2 with only one singular point Q such that OQ = O′ and Q is rational.

3 Q has a degree of singularity equal to degP − 1 and

π(X ′) = g + degP − 1.
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Singular curves with many points and small π

Theorem

Let X be a smooth curve of genus g defined over Fq. Let π be an integer
of the form

π = g + a2 + 2a3 + 3a4 + · · ·+ (n − 1)an

with 0 ≤ ai ≤ Bi (X ), where Bi (X ) is the number of closed points of
degree i on the curve X . Then there exists a (singular) curve X ′ over Fq

of arithmetic genus π such that X is the normalisation of X ′ and

]X ′(Fq) = ]X (Fq) + a2 + a3 + a4 + · · ·+ an.

Roughly speaking we can “transform” a point of degree d on a smooth
curve in a singular rational one, provided that we increase the value of the
arithmetic genus by d − 1.
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Singular curves with many points and small π

Theorem

Let X be a smooth curve of genus g defined over Fq. Let π be an integer
of the form

π = g + a2 + 2a3 + 3a4 + · · ·+ (n − 1)an

with 0 ≤ ai ≤ Bi (X ), where Bi (X ) is the number of closed points of
degree i on the curve X . Then there exists a (singular) curve X ′ over Fq

of arithmetic genus π such that X is the normalisation of X ′ and

]X ′(Fq) = ]X (Fq) + a2 + a3 + a4 + · · ·+ an.

Remark: Points of degree 2 play a fundamental role in this construction:
they are the only ones that make it possible to increase the number of
rational points as much as the degree of singularity of the curve.
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Question

For which values of q, g and π are the bounds

Nq(g , π) ≤ Nq(g) + π − g

Nq(g , π) ≤ q + 1 + g [2
√
q] + π − g

reached?
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Optimal and maximal
curves



Terminology

Definition

Let X be a curve over Fq of geometric genus g and arithmetic genus π.
The curve X is said to be:

(i) an optimal curve if
]X (Fq) = Nq(g , π);

(ii) a δ-optimal curve if

]X (Fq) = Nq(g) + π − g = Nq(g) + δ;

(iii) a maximal curve if

]X (Fq) = q + 1 + g [2
√
q] + π − g .
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Maximal

δ-optimal

Optimal
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Maximal

FHK’s curve
•

δ-optimal

Optimal

,
Marseilles, 6 July 2016 30/52



Fukasawa, Homma and Kim’s curve

In 2011, Fukasawa, Homma and Kim considered and studied the plane
curve B over Fq defined as the image of

Φ : P1 → P2

(s, t) 7→ (sq+1, sqt + stq, tq+1)

Properties of B:

1 B is a rational plane curve of degree q + 1⇒ g = 0, π = q2−q
2 ;

2 Sing(B) ⊆ B(Fq);

3 For P ∈ P1, Φ(P) ∈ Sing(B) if and only if P ∈ P1(Fq2) \ P1(Fq). In
this case, Φ−1(Φ(P)) = {P,Pq}.

]B(Fq) = q + 1 +
q2 − q

2

−→ B is a maximal singular curve with g = 0 and π = q2−q
2

,
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δ-optimal and maximal curves

Proposition

Let X be a curve of geometric genus g and arithmetic genus π. If X is
δ-optimal (maximal) then:

1 the normalisation X̃ is an optimal (maximal) curve;

2 Sing(X ) ⊂ X (Fq);

3 if Q is a singular point on X , then ν−1(Q) = {P}, with P a point of
degree 2 on X̃ ;

4 π − g ≤ B2(X̃ ), where B2(X̃ ) denotes the number of points of degree
2 on X̃ ;

5 ZX (T ) = ZX̃ (T )(1 + T )π−g .
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A theorem for the existence of δ-optimal curves

The existence of δ-optimal curves is strictly connected to the existence of
a large number of points of degree 2 on an optimal smooth curve.

Let us denote

Xq(g): the set of optimal smooth curves defined over Fq of genus g .

B2(Xq(g)): the maximum number of points of degree 2 on a curve
of Xq(g).

Theorem

We have:

Nq(g , π) = Nq(g) + π − g ⇐⇒ g ≤ π ≤ g + B2(Xq(g)).

The quantity B2(Xq(g)) is easy to calculate for g equal to 0 and 1.
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The case of rational curves (g = 0)

B2(Xq(0)) =
q2 − q

2

Corollary

We have
Nq(0, π) = q + 1 + π

if and only if 0 ≤ π ≤ q2−q
2 .

Fukasawa, Homma and Kim’s curve is an explicit example of this corollary

for π = q2−q
2 .
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The case g = 1

Corollary

1 If p does not divide m, or q is a square, or q = p we have:

Nq(1, π) = q + 1 + [2
√
q] + π − 1

if and only if 1 ≤ π ≤ 1 +
q2+q−[2√q]([2√q]+1)

2 .

2 In the other cases we have

Nq(1, π) = q + [2
√
q] + π − 1

if and only if 1 ≤ π ≤ 1 +
q2+q+[2

√
q](1−[2√q])
2 .
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How to bound the quantity B2(Xq(g))?

−→ problem of bounding the number of points of degree 2 on a smooth
curve.

When g ≥ 2 the information on the number of rational points on a
smooth curve of genus g is not enough to determine the number of points
of degree 2.

For X a smooth curve of genus g , we will bound the quantity B2(X ) using
an Euclidean approach developed by Hallouin and Perret.

Then, we will deduce bounds for B2(Xq(g)) by assuming X to be an
optimal smooth curve.
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The Hallouin-Perret’s approach

Let X be a smooth curve defined over Fq of genus g > 0.
For every positive integer n, we associate to X a n-tuple (x1, . . . , xn)
defined as follows:

xi :=
(qi + 1)− ]X (Fqi )

2g
√

qi
, i = 1, . . . , n.

lower bound for xi ←→ upper bound for ]X (Fqi )

upper bound for xi←→ lower bound for ]X (Fqi ).
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The Hallouin-Perret’s approach

xi :=
(qi + 1)− ]X (Fqi )

2g
√

qi
, i = 1, . . . , n.

A consequence of Riemann Hypothesis:

|xi | ≤ 1, for all i = 1, . . . , n

⇓

(x1, . . . , xn) ∈ Cn = {(x1, . . . , xn) ∈ Rn| − 1 ≤ xi ≤ 1, ∀ i = 1, . . . , n}.
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The Hallouin-Perret’s approach

Geometric point of view: a consequence of the Hodge Index Theorem.

Gn =



1 x1 · · · xn−1 xn

x1 1 x1
. . . xn−1

...
. . .

. . .
. . .

...

xn−1
. . .

. . . 1 x1
xn xn−1 · · · x1 1


is a Gram matrix and thus is positive semidefinite.

⇓

(x1, . . . , xn) ∈ Wn = {(x1, . . . , xn) ∈ Rn|Gn,I ≥ 0, ∀ I ⊂ {1, . . . , n+1}}
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The Hallouin-Perret’s approach

Arithmetic point of view: a consequence of the inequalities pointed
out by Ihara:

]X (Fqi ) ≥ ]X (Fq), for all i ≥ 2.

xi ≤
x1

q
i−1
2

+
qi−1 − 1

2gq
i−2
2

.

⇓

(x1, . . . , xn) ∈ Hq,g
n = {(x1, . . . , xn) ∈ Rn|hq,gi (x1, xi ) ≤ 0, for all 2 ≤ i ≤ n},

where

hq,gi (x1, xi ) = xi −
x1
√
qi−1

−
√
q

2g

(
√
q
i−1 − 1

√
qi−1

)
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The Hallouin-Perret’s approach

To sum up, for every n = 0, 1, 2, . . . one has (x1, . . . , xn) ∈ Cn ∩Wn ∩Hq,g
n

Hallouin and Perret showed that, increasing the dimension n, the set
Cn ∩Wn ∩Hq,g

n provides an increasingly sharper lower bound for x1 (and
hence an increasingly sharper upper bound for ]X (Fq)) if g is large enough
compared to q.
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Bounds for the number of points of degree 2

Let X be a smooth curve defined over Fq of genus g . We have

B2(X ) =
]X (Fq2)− ]X (Fq)

2
.

We can write B2(X ) as a function of x1 and x2

B2(X ) = g
√
q(x1 −

√
qx2) +

q2 − q

2

and study this function in the domain Cn ∩Wn ∩Hq,g
n for different values

of n.

We note that any lower bound for x2 implies an upper bound for B2(X ),
possibly depending on x1.
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First order: n = 1

B2(X ) ≤ q2 − q

2
+ g(q +

√
q) =: M ′(q, g).

HHH
HHHq

g
2 3 4 5 6

2 7 11 14 18 21

3 12 17 21 26 31

22 18 24 30 36 42

Table: First-order upper bounds for B2(Xq(g)) given by M ′(q, g).
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Second order : n = 2

C2 ∩W2 ∩Hq,g
2 −→

{
2x21 − 1 ≤ x2 ≤ 1

x2 ≤ x1√
q + q−1

2g .

Table: The region C2 ∩W2 ∩Hq,g
2 , respectively for g < g2, g = g2 and g > g2.

x2 ≥ 2x21 − 1⇒ B2(X ) ≤ g
√
q(x1 −

√
q(2x21 − 1)) +

q2 − q

2
.

,
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Second order : n = 2

Let X be a smooth curve of genus g > 0 over Fq. We have:

B2(X ) ≤
q2 + 1 + 2gq − 1

g (]X (Fq)− (q + 1))2 − ]X (Fq)

2
.

M ′′(q, g) :=
q2 + 1 + 2gq − 1

g (Nq(g)− (q + 1))2 − Nq(g)

2

⇓

B2(Xq(g)) ≤ M ′′(q, g).

,
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Second order : n = 2

HH
HHHHq

g
2 3 4 5 6

2 1 2 3 4 5

3 3 3 3 5 7

22 5 0 4 5 3

Table: Second-order upper bounds for B2(Xq(g)) given by M ′′(q, g).
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Third order: n = 3

C3 ∩W3 ∩Hq,g
3 −→



2x21 − 1 ≤ x2 ≤ 1

−1 + (x1+x2)
2

1+x1
≤ x3 ≤ 1− (x1−x2)2

1−x1
1 + 2x1x2x3 − x23 − x21 − x22 ≥ 0

x2 ≤ x1√
q + q−1

2g

x3 ≤ x1
q + q2−1

2g
√
q .

↓

projection over 〈x1, x2〉


2x21 − 1 ≤ x2 ≤ 1

−1 + (x1+x2)2

1+x1
≤ x1

q + q2−1
2g
√
q

x2 ≤ x1√
q + q−1

2g .

,
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Third order: n = 3

Table: The projection of C3 ∩W3 ∩Hq,g
3 on the plane < x1, x2 > respectively for g < g3

and g > g3.

x2 ≥ −x1 −

√
1

q
x21 +

(
1

q
+ 1 +

q2 − 1

2g
√
q

)
x1 + 1 +

q2 − 1

2g
√
q

,
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Third order: n = 3

Proposition

Let X be a smooth curve of genus g ≥
√
q(q−1)√

2
over Fq. We have:

B2(X ) ≤
√

1/4
(
]X (Fq)

)2 + α(q, g)]X (Fq) + β(q, g)−
(1 +
√
q)

2
]X (Fq) +

q2 + 1 +
√
q(q + 1)

2
,

où {
α(q, g) = − 1

4
((2q
√
q + 2

√
q)g + q3 + q + 2)

β(q, g) = 1
4
(4q2g2 + 2

√
q(q3 + q2 + q + 1)g + q4 + q3 + q + 1).

M′′′(q, g) :=

√
1/4

(
Nq(g)

)2 + α(q, g)Nq(g)) + β(q, g)−
(1 +
√
q)

2
Nq(g)) +

q2 + 1 +
√
q(q + 1)

2

⇓

B2(Xq(g)) ≤ M ′′′(q, g).
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Third order: n = 3

HH
HHHHq

g
2 3 4 5 6

2 0 0 1 1 1

3 2 1 2 3

22 4 1

Table: Third-order upper bounds for B2(Xq(g)) given by M ′′′(q, g).
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Upper bounds for B2(Xq(g))

HH
HHHHq

g
2 3 4 5 6

2 7 11 14 18 21

3 12 17 21 26 31

22 18 24 30 36 42

↓
HHH

HHHq
g

2 3 4 5 6

2 0 0 1 1 1

3 3 2 1 2 3

22 5 0 4 4 1

Table: Upper bounds for B2(Xq(g)).
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Some exact values for Nq(g , π)

Proposition

Let q be a power of a prime number p. We have:

1 Nq(0, π) = q + 1 + π if and only if 0 ≤ π ≤ q2−q
2 .

2 If p does not divide [2
√
q], or q is a square, or q = p, then

Nq(1, π) = q + [2
√
q] + π if and only if

1 ≤ π ≤ 1 +
q2+q−[2√q]([2√q]+1)

2 . Otherwise,
Nq(1, π) = q + [2

√
q] + π − 1 if and only if

1 ≤ π ≤ 1 +
q2+q+[2

√
q](1−[2√q])
2 .

3 If g <
√
q(
√
q−1)
2 and g ≤ π ≤ q2−q

2 − g(q +
√
q − 1) then

Nq(g , π) = Nq(g) + π − g .

4 N2(2, 3) = 6.

5 N2(3, 4) = 7.

6 N22(4, 5) = 14.
,
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